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Absbact. In this paper, it is proved that if a suitable requirement of commutation relations 
between the entries ofthe quantum transformation matrix and of the gauge potential matrix 
is satisfied, then the q-trace of quantum group G h ( 2 )  gauge field intensity is gauge invari- 
ant, which is a q-analytic function on the quantum plane. 

In recent years, there have been several approaches to quantum group gauge field 
theories [l-31, however, there are still some difficulties. It seems to us the crux of the 
problem is that the algebraic generators of the quantum hyperplanes do not play the 
roles of non-commutative movable coordinates as in ordinary classical analysis as yet. 
For this reason, in the preceding paper [4] we suggested a fundamental way to overcome 
the difficulties, i.e. a non-commutative analysis on a quantum hyperplane is given, and 
it has been used in the discussions concerning quantum group gauge fields. However, 
an important problem-the gauge invariant problem-remains to be settled. In this 
paper some results concerning this problem are given; at the present only the two- 
dimensional case is considered. 

It is known that in seeking the invariants, a useful formula is 

Tr(5'MS-') =Tr(M) (1) 
where Tr denotes the trace of a matrix, and the entries of matrices Sand Mare numbers, 
or at the least they are commutative with each other in multiplication. For the case of 
quantum groups (quantum matrices), equation (1) does not hold in general. However, 
recently, lseav and Popowicz [3] obtained a result for a 2 x 2  matrix T= 
(T;)€GLq(2) and a matrix F=($) if Tjs commute with f i s :  

[ T j , f i ] = O  ( i , j ,  k, I= 1,2) (2) 

Tr,(F) =q-'F: + qF:=Tr,,( TFT-' ) (3) 

then 

where qeC is the deformation parameter, and we suppose it is not a unit root in this 
paper. Tr4 is called the q-trace. In this paper, we consider how to use (3) in the non- 
commutative analysis on the quantum plane [5] %'= @(x, y )  with the commutation 
relation 

xy= qyx. (4) 
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There has been some criticism [2] of the result in [3], however the result in this paper 
is not effected. 

In the following the Greek indices a, b, y, . . . take values 0, 1,2,. . . , and the Latin 
indices i, j ,  k ,  . . . take values 1,2. We use the Einstein summation convention, i.e. the 
repeated Greek/Latin indices are summed over the values 0,1,2, . . . / I ,  2, unless there 
is a contrary state. In addition, we call the finite or infinite generator set of a non- 
commutative and associative algebra a q-sequence. Now, we consider a non-wmmu- 
tative algebra F, which is freely generated by the q-sequence {Yap, gYs} with the com- 
mutation relations 

(5) 
q-%pg,s =q'-usg,sfap 

[fa? XI =[fq3, y1= k y b ,  X 1 = k y 6 r  yl=o 
(no summing for the reFated indices). 

We consider the infinite polynomialsf'(x, y)  =f&"yp and gq(x, y) =g,&yb which 
can be regarded as elements of the algebra FW. It is easily verified using (4) and (3, 
thatf', g' satisfy the commutation relation 

f 'g' = 4gy-q. (6) 
This means that byf' and g' a quantum plane is constructed again.fq and g' can be 
called q-analytic functions [4], since they change into ordinary analytic functions when 
q + 1 and x, y are taken as ordinary complex variables, and fop and g,s are taken as 
complex numbers. 

For a q-analytic function f', we-define the partial derivatives by 

~ ~ ~ = $ ~ [ a I ~ f . p f - ~ y B  

8,f'= ~"[Pl,f.aX" Y - ' 

d = dx a,+ dy 8, 

(7) 

where the q-integer [a],=(?- I)/($- l)=g'a-')+$(a-2)+ ... + I .  Let 

(8) 
then differential calculus [6] on the quantum 5%' gives 

dZ=O 

where Q, is a k-form. In this paper we use the following commutation relations [6] 

x dx=8 dx x x dy=($- 1) dxy+q dy x 

y dx= q dx y Y dy=q2 dY Y (10) 
1 

4 
dx dx=dy. dy = 0 dx dy = -- dy dx. 

According to [4], we can consider the 2 x 2 matrix 

where T r ( x ,  y)=(Tr),ax"yp is a q-analytic function on e. If some commutation rela- 
tions similar to ( 5 )  in the q-sequence {A.p, Bap, Cep, D,p} are satisfied (see [4] ) ,  then 



we have 
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AB = qBA AC= qCA 

AD -DA=(q- q-')BC 

BC= CB BD = qDB 

CD = qDC. 

This means that T(x, y )  is a q-analytic matrix on the quantum plane, and is an element 
of the quantum group GLq(2). In [4] Tis taken as the gauge transformation, and the 
gauge potential is taken as a 2 x 2 I-form matrix E(x, y) = dx' E', (dx' = dx, = dy) 

E' = Ei (x, y )  = (i= 1,2) 

where the entries Ek(n, y)=(E:) ,pxayp ,  (k, a= 1,2) are q-analytic functions. The key 
problem is how to determine the interior algebraic structure of q-sequence {(Ek)ap} 
and the algebraic relation between q-sequences { ( E k ) n B )  and { (Tb") , s } .  The interior 
algebraic structnre will be determined by the gauge field equations as in [4]. As for the 
algebraic relation between ((.($,).p} and {(r)Y~}r we notice that it is not yet given. 

Now, we define the commutation relation between {(Ek),p] and {(T&z] by the 
following equation 

dx' f ib,  U) dx' C ( x ,  U) = T W ,  Y )  dx' eo(., y)  dx' (14) 

where El =(9) (i, j =  1,2) is the gauge field intensity [4], which is a 2 x 2 matrix, and 
is anti-symmetric for the indices i, j: 

Fg = ai@(&) - aj&(&) -F EiQ$(Ek) - EjQF(Ek) (a, =a,, a, = ay). (15) 

Here and in the following, 0: and Qz, respectively, denote the operators left and right 
translating dxk through q-analytic functions, which are linear [4,6]: 

f 4 dXk= dr'@( f 
dxk f 4= QF( f 9 dxi. 

Evidently, we have 

@ o Q:= e: o e= Sf o 1 (17) 

where 1 denotes the identical operator. From (10) we can concretely calculate the results 
as follows: 

0: (x"yp) =q*"+Px"yP o : ( X ~ y p ) = o  
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Therefore (14)  can be written as 

Q:[&. e ' , ( ~ ) ] d x ' d x ' = T ~ . e ~ r ~ ~ ) ~ d x ' .  (19) 
Next, by using (lo), (18) and the anti-symmetry of Fu conceming the indices i and j ,  
and from the coefficient of the term dx dy we obtain 

Q: [FfkQgG" )I Qz'tFfhQ; (Tb" )I = E[ Q: (Ffa) +1 Q:(&)]. (20) 

In order to obtain the explicit formulation of the commutation relation between q- 
sequences { ( F $ , ) 7 ~ }  and {(E),,p}, we must use (7), (15)  and (18) ,  and after lengthy 
calculation we see that (ZO), in fact, can he induced into the following commutation 
relation : 

4 9 

(Ffk)7s(E)mD (21) q-P~(r{)aa(~k ) - -3W+P)-oS 
120 7 s - q  

(no summing for the repeated indices) where F12 is the only essential non-zero compo- 
nent of E?: 
F l 2  = V I 2  ,sxyus 

[6+ 1lq(E1)~,6+l 
- 2 y - 8 -  I (Fdrs'4 

- { q - y - l [ y +  I ] , + ~ - ~ - ~ ~ - ~ ( I  - $ ~ + ~ ) [ s +  1 ] , } ( ~ ~ ) ~ + ~ , ~  

(E,)./?(E2)pr -q-- r-Pp (E2)oP(El)Pr} + {q -0 , -2B-PP 

+ c ql+P-3P-r-PP 
;m 

(1 - a ) ( K ) 0 P ( E 2 ) p c  (22) 
.a+p-7+1 
p+r-6-1 

and (Ei),,p is the matrix whose entries are ( ~ 7 i ) ~ p  (k, U =  I ,  2). Therefore if we stipulate 
that the q-sequences { (~$L) ,s}  and {(r),~} obey the commutation relation ( Z l ) ,  then 
we have 

[dx'$ndx', E]=O. (23) 
According to [4], the gauge transformation of E is 

E + E = T E T 1 - ( d T ) T '  
where T'cGL,(Z) is the inverse of T, 

det,(T)=AD-q BC 

and the gauge transformation of Ffi has been proved, i.e. 

Now, left and right multiply the two sides of (26) by dx' and dxj, respectively, and 
take the sum, then we have 

Fg-+Ej = G ( T ) F & ( T ' ) .  (26) 

M-.@=TMT-' 
(27) M=dx'Fg dxj fi = dx' $,, dx j .  
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Equation (23) is just 

[M:, Zy=o .  
Therefore according to (2) and (3), we have 

Tr,(M) =Tr,(@). 

From the anti-symmetry of Fv and (10) and (16) we have 

(0: +a 0: )  Tr,(FI2 -pI2) = 0 (30) 

q"'p(qp+qa-l) Trq[ (Fdap-  (&).PI = O .  (31) 

Trq(Fv) =Trq(pp) (32) 

w, Y )  =q-'F;l (x, U) + qE&(x, Y )  

I.e. 

This means that 

therefore on the quantum plane '& the q-analytic function 

(33) 
is a GLq(2) gauge invariant. This result is different from [3], since Iv is not a 'constant' 
element of GLq(2). 

When q -t 1, then 0: and Q: -t 6,". 1, and the above results all return to the corre- 
sponding results in the ordinary gauge field theories, i.e. we obtain a quantum analogy 
of the ordinary gauge invariants. 

Summing up, we have proved, that when some suitable commutation relations are 
provided, then there are gauge invariants in the quantum group GLq(2) gauge fields. 
As for the case of higher dimensional quantum group GLq(n) (n23), this is more 
complex. The results concerned will be discussed elsewhere. 
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